

碧云天生物技术/Beyotime Biotechnology 订货热线: 400-1683301或800-8283301 订货e-mail: order@beyotime.com 技术咨询: info@beyotime.com 网址: http://www.beyotime.com

NA-Green (EB升级换代产品, 2000X)

产品编号	产品名称	包装
D0133	NA-Green (EB升级换代产品, 2000X)	1ml

产品简介:

- ▶ 碧云天的NA-Green (Nucleic Acid Green,核酸绿)是一种EB (Ethidium bromide,溴化乙锭)的升级换代产品,用于凝胶中DNA、RNA等核酸的染色。NA-Green具有安全(未检测到致突变性和细胞毒性)、灵敏度高、稳定性好等优点,凝胶中的核酸在使用本产品后经约500nm波长蓝光(也可以使用约260nm紫外光)激发呈现绿色荧光,适用于原先使用SYBR Green或SYBR Gold为核酸染料的凝胶成像和检测系统。
- ▶ 由于NA-Green在500nm左右处有最大的激发波长,可以使用对人体无害的蓝光灯或蓝光成像仪进行核酸检测,从而避免常规的紫外检测对核酸样品的致突变性,以及紫外对人的眼睛和皮肤的伤害。特别在切胶回收时,使用NA-Green并用蓝光灯具有很大的优势,不仅可以避免核酸样品的突变,也可以避免紫外光对人体的伤害。
- ➤ NA-Green比EB或SYBR Green更安全。NA-Green在远高于其工作浓度范围时均没有细胞毒性及诱变性。艾姆斯氏试验(Ames test)结果表明,即使在S9代谢活化时,也没有检测到致突变性。NA-Green和碧云天另外一种安全型核酸染料NA-Red,由于它们特殊的化学结构使其难以进入细胞,从而大大降低甚至避免了染料的致突变性和细胞毒性。艾姆斯氏试验结果表明,NA-Green比NA-Red更安全,即便在S9代谢活化时,当NA-Green浓度高达约20微克/毫升时,也没有检测到致突变性。而SYBR Green染料可以穿透细胞膜,进入活细胞并染色DNA。并且有报道SYBR Green可以强烈增强紫外线诱导的基因突变。
- ▶ NA-Green检测灵敏度高,对于小分子量核酸的染色效果好。NA-Green的检测灵敏度比EB高8-10倍,在检测低浓度、微量DNA或RNA方面比EB更佳,尤其对小分子量的DNA检测非常灵敏。在使用浸泡染色法时,NA-Green和SYBR Gold的灵敏度相近甚至更高;与SYBR Gold不同的是,NA-Green预先配制在凝胶中也有很高的灵敏度。EB对于小分子量核酸染色效果差,而NA-Green对于小分子量核酸的染色效果很好,便于观察酶切或PCR获得的小分子量核酸片段。本说明书推荐使用的NA-Green浓度,其检测效果略优于EB。如果希望获得更高的染色灵敏度,可以适当提高NA-Green的工作浓度。
- ➤ NA-Green的稳定性好,染色重复性高。含SYBR Green的凝胶核酸染色的重复性比较差,这通常是由于SYBR系列染料的稳定性差导致的。而NA-Green的稳定性很好,可以室温长时间保存及使用微波炉加热。NA-Green的光稳定性良好,可以在室内正常光线下操作而无需避光。由于其热稳定性和光稳定性,含NA-Green的凝胶在核酸染色时的重复性非常好。
- ➤ NA-Green可以使用和SYBR Green或EB相同的检测体系。NA-Green具有和SYBR Green或SYBR Gold几乎相同的光学性质,两者的激发光和发射光都非常接近,这样可以直接用NA-Green替换SYBR Green,以使用SYBR Green的凝胶观察、拍照或成像系统(约500nm激发)。对于原来用于EB染料观察的系统,可以考虑选用碧云天的NA-Red染料来替代EB,但也可以使用没有致突变性的NA-Green来替代EB。使用NA-Green来替代EB,并且用EB的紫外检测体系时,检测灵敏度会比使用NA-Red低约4-5倍。对于既可以观察SB也可以观察SYBR Green的具有紫外和蓝光两种激发光的凝胶成像系统,则推荐直接用NA-Green来替换EB。NA-Green的激发光谱和发射光谱请参考图1。

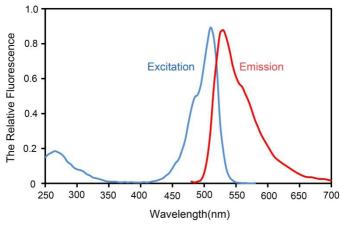


图1. NA-Green的激发光谱和发射光谱

- ▶ NA-Green的使用方法和EB一致。NA-Green可以按适当比例直接加入琼脂糖中配制成凝胶,也可以在电泳完毕后对凝胶进行染色。前者更加方便,而后者灵敏度要更加高一些。但由于NA-Green本身已经非常灵敏,通常采用把NA-Green直接配制在凝胶中就可以了。对于一些特殊的情况,如核酸样品量特别少的情况等,则可以考虑电泳后再对凝胶进行染色。
- ▶ NA-Green对于核酸的迁移率影响非常小,小于SYBR Green对于核酸迁移率的影响。

▶ 通过凝胶回收试剂盒(如碧云天或Qiagen的凝胶回收试剂盒)或酚氯仿抽提,可以有效去除与DNA或RNA结合的NA-Green,从而确保不会影响后续的连接、酶切、PCR、测序等常规的分子生物学用途。

包装清单:

产品编号	产品名称	包装
D0133	NA-Green (EB升级换代产品, 2000X)	1ml
	说明书	1份

保存条件:

室温保存, 至少两年有效。

注意事项:

- ➤ 为确保使用的不是假冒的NA-Green,可以用细胞培养液把NA-Green稀释至1X,然后对培养的活细胞进行染色。随后在荧光显微镜下尝试用各种激发光观察,如果发现活细胞细胞核出现明显的荧光,则可以判定为假冒产品。如果各种激发光下活细胞均无荧光,则说明该核酸染料是不能进入活细胞的相对安全的染料。具有强致突变性的吖啶橙(Acridine Orange)染色核酸后也呈现绿色荧光,但其可以染色活细胞,而NA-Green不会染色活细胞。
- ➤ 使用蓝光灯来检测NA-Green染色的核酸胶时,需要注意避免使用一些实为紫外灯的假冒伪劣的蓝光灯,以减少紫外线对于核酸样品和人体的伤害。比较简单的判断方法是,对于EB或NA-Red染色的核酸胶,蓝光灯照射后是不会出现荧光条带的,而仅对于NA-Green染色的核酸胶,蓝光灯照射后才会出现荧光条带。如果对于EB或NA-Red染色的核酸胶照射后也能观察到荧光条带,则说明使用的蓝光灯实际为紫外灯。
- ▶ 制备好的NA-Green琼脂糖凝胶,在4°C避光条件下通常可以保存3-5天。
- > NA-Green琼脂糖凝胶再次熔化使用时,为取得更好的观察效果,需要添加适量NA-Green。
- ▶ 电泳之后的凝胶不建议重复使用。
- ▶ 电泳后再使用NA-Green染色的凝胶一般不需要脱色,如果发现背景太高,可以使用不含核酸酶的水进行脱色处理。
- ▶ NA-Green和NA-Red除了可以染色双链DNA外,也可染色单链DNA和RNA。NA-Red对单链核酸的染色灵敏度约为对双链DNA 染色灵敏度的一半。NA-Red对单链核酸的染色灵敏度约为NA-Green的5倍。
- ▶ 如果使用聚丙烯酰胺凝胶,请使用浸泡染色法染胶,并延长染色时间至30分钟-1小时。
- 如果观察到条带弥散或者分离不理想,建议使用浸泡染色法染色以确认是否与染料有关。如果浸泡染色法染色后仍然出现类似的问题,说明与染料无关,请尝试以下方法:使用新鲜配制的电泳缓冲液、降低核酸的上样量、降低染料的浓度、降低琼脂糖浓度、选用更长的凝胶、降低电泳电压一倍以上并延长凝胶电泳时间以改善电泳效果、使用更薄的梳齿等。
- ▶ 本产品兼容常用的电泳缓冲液,例如TAE和TBE。
- ▶ NA-Green适用于约500nm或260nm激发的成像系统,如果使用普通的适用于NA-Red或EB的紫外灯或成像系统(约300nm激发),也能较好地观察到荧光,但强度会略弱一些。
- > NA-Green不属于有毒有害物质,并通过了环境安全相关测试,相关废弃物无需特殊处理,可参考常规化学试剂进行处理。
- ▶ 本产品仅限于专业人员的科学研究用,不得用于临床诊断或治疗,不得用于食品或药品,不得存放于普通住宅内。
- ▶ 为了您的安全和健康,请穿实验服并戴一次性手套操作。

使用说明:

NA-Green和EB(溴化乙锭)一样可以根据使用者的偏好或实验目的采用以下方法中的一种:

1. 琼脂糖凝胶中添加NA-Green。

根据需要配制适当浓度(例如1-3%)的琼脂糖胶液。在琼脂糖完全融解后,适当冷却但又不会使琼脂糖凝固时,按照每100毫升胶液加入50微升NA-Green的比例(2000:1)加入NA-Green。混匀后即可把琼脂糖胶液倒入制备凝胶的模具中。适当量的DNA或RNA在该胶中电泳后,用约500nm波长蓝光激发或相应的凝胶成像系统检测(也可以使用常规的紫外灯或紫外凝胶成像检测系统),就可以观察到明亮的核酸条带。

说明: NA-Green非常稳定,所以NA-Green可以像EB一样在琼脂糖凝胶液加热融解后但未凝固前加入并混匀,也可以在琼脂糖融解前加入然后再微波炉加热融解并混匀。

2. 电泳完毕后对琼脂糖凝胶染色。

按照每100毫升100mM NaCl溶液或水中加入100-200微升NA-Green的比例(500-1000:1)加入NA-Green,配制成NA-Green染色液。把电泳完毕的琼脂糖凝胶放到适当的容器中,加入适量上述配制好的NA-Green染色液,确保至少盖住凝胶。在摇床上缓慢摇动(30-50rpm)染色20-30分钟。染色的时间根据胶的厚度而定,胶厚则染色时间需要长一些,胶薄则染色时间可以短一些。染色完毕后,在紫外灯下即可观察核酸条带。要观察到更为清晰的条带,可以在染色后用水漂洗1-2次,每次3-5分钟,以消除背景,然后用约500nm波长蓝光激发或相应的凝胶成像系统检测(也可以使用常规的紫外灯或紫外凝胶成像检测系统)。NA-Green染色液可以重复使用3次左右。NA-Green染色液也可以一次大量制备,在室温下避光保存,直至用完。对于核酸需要回收的情况,操作过程中需要注意避免核酸酶污染。

相关产品:

_	 нн•		
	产品编号	产品名称	包装
	D0071	DNA上样缓冲液(6X)	2ml

D0072	BeyoRed DNA上样缓冲液(6X)	2ml
D0128	NA-Red (EB升级换代产品, 2000X)	1ml
D0130	NA-Red (EB升级换代产品, 2000X)	5ml
D0133	NA-Green (EB升级换代产品, 2000X)	1ml
D0135	NA-Green (EB升级换代产品, 2000X)	5ml
D0139	Gel-Red (EB升级换代产品, 10000X)	0.2ml
D0140	Gel-Red (EB升级换代产品, 10000X)	1ml
D0143	Gel-Green (EB升级换代产品, 10000X)	0.2ml
D0145	Gel-Green (EB升级换代产品, 10000X)	1ml
ST004L	Agarose	50g
ST004M	Agarose (Low EEO)	50g
ST004Q	Agarose (Low EEO)	250g
ST716	TAE (50X)	500ml
ST718	TBE (5X)	500ml
ST720	TBE (1X premixed powder)	2L
ST721	TBE (1X premixed powder)	10×2L
ST723	TBE (5X premixed powder)	2×2L

Version 2020.10.19